Google
 

Monday, 19 May 2008

Boosting 'Mussel' Power: New Technique For Making Key Marine Mussel Protein

Researchers in Korea report development of a way to double production of a sticky protein from marine mussels destined for use as an antibacterial coating to prevent life-threatening infections in medical implants. The coating, produced by genetically-engineered bacteria, could cut medical costs and improve implant safety, the researchers say.
Bacterial infection of medical implants, such as cardiac stents and dialysis tubing, threatens thousands of people each year and is a major medical challenge due to the emergence of antibiotic-resistant bacteria. Several research groups are working on long-lasting, germ-fighting coatings from mussel proteins, but production of these coatings is inefficient and expensive.
Hyung Joon Cha and colleagues previously developed a way to use genetically engineered E. coli bacteria to produce mussel adhesive proteins. Now they report adding a new gene for producing Vitreoscilla hemoglobin (VHb), a substance that boosts production of proteins under low-oxygen conditions. Adding the VHb gene to the engineered E. coli doubled the amount of mussel proteins produced, which could lead to more cost-effective coatings, the researchers say.
The article "Enhancement of Mussel Adhesive Protein Production in Escherichia coli by Co-expression of Bacterial Hemoglobin" is scheduled for the June 6 issue of ACS' Biotechnology Progress.

No comments: