Google
 

Monday 19 May 2008

Warming Up For Magnetic Resonance Imaging

Standard magnetic resonance imaging, MRI, is a superb diagnostic tool but one that suffers from low sensitivity, requiring patients to remain motionless for long periods of time inside noisy, claustrophobic machines. A promising new MRI method, much faster, more selective — able to distinguish even among specific target molecules — and many thousands of times more sensitive, has now been developed in the laboratory by researchers at the Department of Energy's Lawrence Berkeley National Laboratory and the University of California at Berkeley
The key to the new technique is called "temperature-controlled molecular depolarization gates." It builds on a series of previous developments in MRI and the closely related field of nuclear magnetic resonance, NMR (which instead of an image yields a spectrum of molecular information), by members of the laboratories of Alexander Pines and David Wemmer at Berkeley Lab and UC Berkeley. Pines is the Glenn T. Seaborg Professor of Chemistry at the University of California at Berkeley and a senior scientist in Berkeley Lab's Materials Sciences Division. Wemmer is Professor of Chemistry at UC Berkeley and a member of Berkeley Lab's Physical Biosciences Division.
The technique was developed by a team of past and present Pines and Wemmer lab members headed by Leif Schröder of Berkeley Lab's Materials Sciences Division and including Lana Chavez, Tyler Meldrum, Monica Smith, and Thomas Lowery.
"The new method holds the promise of combining a set of proven NMR tools for the first time into a practical, supersensitive diagnostic system for imaging the distribution of specific molecules on such targets as tumors in human subjects," says lead author Schröder, "or even on individual cancer cells."

No comments: